2',3'-O-Isopropylideneuridine

Basic information

  • Product Name:2',3'-O-Isopropylideneuridine
  • CasNo.:362-43-6
  • MF:C12H16N2O6
  • MW:284.269

Physical and Chemical Properties

  • Boiling Point:163-166 °C
  • Packing:25kg/drum or as required by customer
  • Throughput:
Inquiry

Product Details

CasNo: 362-43-6

MF: C12H16N2O6

Packing: 25kg/drum or as required by customer

Factory Supply industrial standard 2',3'-O-Isopropylideneuridine 362-43-6 In Stock

 

Synonyms: Isopropylideneuridine;2',3'-O-Isopropylidene-D-uridine;Uridine,2',3'-O-(1-methylethylidene)-;Uridine,2',3'-O-isopropylidene;Uridine 2',3'-acetonide

Molecular Formula:  C12H16N2O6

Molecular Weight: 284.27  

CAS Number362-43-6

Molecular Structure:

Item

Specification

Appearance

White to off-white crystalline powder

Assay (HPLC),%

≥98.0

Melting Point, ℃

163.0~168.0

Loss on drying,%

≤1.0

Residue on ignition,%

≤0.10

Characteristics:It is white to off-white crystalline powder. It is easily soluble in water and slightly soluble in methanol.

2’3’-O-Isopropylideneuridine(Cas 362-43-6) Usage

Monupivir (Molnupiravir) is a broad-spectrum anti-RNA virus drug, which has obvious effect on novel coronavirus (COVID-19),significant inhibitory effect on the proliferation of SARS-CoV-2 virus. It is the first oral anti-novel coronavirus drug in the world, which can reduce the risk of hospitalization or death by 50% of COVID-19 patients. 2 ′, 3 ′ -O-isoisopropyl uridine is an important intermediate in Molnupiravir synthesis.

Storage: Store in a tightly closed container. Maintain in a cool and dry area.

Package: 25kg/drum or as required by customer.

Expiration Date: 2 years

362-43-6 Relevant articles

5',6'-Nucleoside phosphonate analogues architecture: Synthesis and comparative evaluation towards metabolic enzymes

Gallier, Franck,Alexandre, Julie A. C.,ElAmri, Chahrazade,Deville-Bonne, Dominique,Peyrottes, Suzanne,Perigaud, Christian

, p. 1094 - 1106 (2011)

Nucleoside phosphonates have been design...

Synthesis and utility of novel C-meso-glycosylated metalloporphyrins

Cornia, Mara,Menozzi, Monica,Ragg, Enzio,Mazzini, Stefania,Scarafoni, Alessio,Zanardi, Franca,Casiraghi, Giovanni

, p. 3977 - 3983 (2000)

Novel hybrid porphyrins bearing two and ...

Flexible nucleobase receptor - Effect of self-preorganization of artificial receptor

Kuroda, Yasuhisa,Lintuluoto, Juha M.,Ogoshi, Hisanobu

, p. 3729 - 3732 (1994)

A new type flexible receptor which has t...

Novel bisubstrate uridine-peptide analogues bearing a pyrophosphate bioisostere as inhibitors of human O-GlcNAc transferase

Ryan, Philip,Shi, Yun,von Itzstein, Mark,Rudrawar, Santosh

, (2021)

Protein O-linked β-D-N-acetylglucosamine...

Rapid Synthesis of a Natural Product-Inspired Uridine Containing Library

Chen, Wei-An,Cheng, Wei-Chieh,Hu, Kung-Hsiang,Lin, Yan-Ting,Liu, Wan-Ju,Lo, Lee-Chiang,Tan, Yee-Ling

, p. 600 - 607 (2020)

The preparation of natural product-inspi...

A Simple Conversion of 5-Cyanouridine into Uridine

Mincher, David J.,Shaw, Gordon

, p. 1488 - 1489 (1986)

2',3'-O-Isopropylideneuridine (4) was pr...

Effect of uridine protecting groups on the diastereoselectivity of uridine-derived aldehyde 5’-alkynylation

Othman, Raja Ben,Fer, Micka?l J.,Le Corre, Laurent,Calvet-Vitale, Sandrine,Gravier-Pelletier, Christine

, p. 1533 - 1541 (2017)

The 5′-alkynylation of uridine-derived a...

Synthesis and antibacterial activity of 5′-tetrachlorophthalimido and 5′-azido 5′-deoxyribonucleosides

Van Ostrand, Robert,Jacobsen, Casey,Delahunty, Alicia,Stringer, Carley,Noorbehesht, Ryan,Ahmed, Haidi,Awad, Ahmed M.

, p. 181 - 197 (2017)

Reported is an efficient synthesis of ad...

Evaluation of BBB permeable nucleolipid (NLDPU): A di-C15-ketalised palmitone appended uridine as neuro-tracer for SPECT

Swastika,Chaturvedi, Shubhra,Kaul, Ankur,Hazari, Puja Panwar,Jha, Preeti,Pal, Sunil,Lal, Sangeeta,Singh,Barthélémy, Philippe,Mishra, Anil K.

, p. 269 - 282 (2019)

Despite being in routine for onco-diagno...

Deploying Fluorescent Nucleoside Analogues for High-Throughput Inhibitor Screening

Seebald, Leah,Madec, Ama?l G. E.,Imperiali, Barbara

, p. 108 - 112 (2020)

High-throughput small-molecule screening...

Photophysical properties of zinc phthalocyanine-uridine single walled carbon nanotube - Conjugates

Ogbodu, Racheal O.,Amuhaya, Edith K.,Mashazi, Philani,Nyokong, Tebello

, p. 231 - 239 (2015)

The photophysical properties of the conj...

-

Srivastava,Rousseau

, p. 455 (1973)

-

Efficient synthesis and antifungal investigation of nucleosides’ quaternary ammonium salt derivatives

Dmochowska, Barbara,Pellowska-Januszek, Lucyna,Samaszko-Fiertek, Justyna,Slusarz, Rafal,Wakiec, Roland,Madaj, Janusz

, p. 157 - 171 (2019)

Quaternary ammonium salts are a group of...

A Modular Approach to Phosphoglycosyltransferase Inhibitors Inspired by Nucleoside Antibiotics

Walvoort, Marthe T. C.,Lukose, Vinita,Imperiali, Barbara

, p. 3856 - 3864 (2016)

Phosphoglycosyltransferases (PGTs) repre...

Selectivity in C-alkylation of dianions of protected 6-methyluridine

Nguyen, Ngoc Hoa,Castanet, Anne-Sophie,Mortier, Jacques,Len, Christophe

, p. 1228 - 1233 (2011)

A regioselective synthesis of 6-ω-alkeny...

4-(Acetylthio)-2,2-dimethyl-3-oxobutyl and 4-(tert-Butyldisulfanyl)-2,2-dimethyl-3-oxobutyl as Protecting Groups for Nucleoside 5′-Phosphoramidates Derived from L -Alanine Methyl Ester

Sontakke, Vyankat A.,L?nnberg, Harri,Ora, Mikko

, p. 5004 - 5012 (2015)

Phosphoramidates 1 and 2 were synthesize...

A potent, covalent inhibitor of orotidine 5′-monophosphate decarboxylase with antimalarial activity

Bello, Angelica M.,Poduch, Ewa,Fujihashi, Masahiro,Amani, Merhnaz,Li, Yan,Crandall, Ian,Hui, Raymond,Lee, Ping I.,Kain, Kevin C.,Pai, Emil F.,Kotra, Lakshmi P.

, p. 915 - 921 (2007)

Orotidine 5′-monophosphate decarboxylase...

An efficient method for the synthesis of selenium modified nucleosides: its application in the synthesis of Se-adenosyl-l-selenomethionine (SeAM)

Kogami, Masakazu,Koketsu, Mamoru

, p. 9405 - 9417 (2015)

In this paper, we report that a versatil...

Clay catalyzed acetonation: A simple method for the preparation of isopropylidene carbohydrates

Asakura, Jun-Ichi,Matsubara, Yoshio,Yoshihara, Masakuni

, p. 231 - 239 (1996)

This paper reports a simple method for t...

Synthesis of [60]fullerene-glycopyranosylaminopyrimidin-4-one conjugates

Jord?o, Carina I.C.,Farinha, Andreia S.F.,Enes, Roger F.,Tomé, Augusto C.,Silva, Artur M.S.,Cavaleiro, José A.S.,Ramos, Catarina I.V.,Santana-Marques,Almeida Paz, Filipe A.,de la Torre Ramirez, José M.,de la Torre, Maria D.L.,Nogueras, Manuel

, p. 4427 - 4437 (2008)

The synthesis of several C60 derivatives...

Pac13 is a Small, Monomeric Dehydratase that Mediates the Formation of the 3′-Deoxy Nucleoside of Pacidamycins

Michailidou, Freideriki,Chung, Chun-Wa,Brown, Murray J. B.,Bent, Andrew F.,Naismith, James H.,Leavens, William J.,Lynn, Sean M.,Sharma, Sunil V.,Goss, Rebecca J. M.

, p. 12492 - 12497 (2017)

The uridyl peptide antibiotics (UPAs), o...

Design, modeling & synthesis of 1,2,3-triazole-linked nucleoside-amino acid conjugates as potential antibacterial agents

Malkowski, Sarah N.,Dishuck, Carolyn F.,Lamanilao, Gene G.,Embry, Carter P.,Grubb, Christopher S.,Cafiero, Mauricio,Peterson, Larryn W.

, (2017)

Copper-catalyzed azide-alkyne cycloaddit...

Unexpected side product formed during LDA-induced phosphonylation of uridine

Bhar, Palash,Bearne, Stephen L.

, p. 609 - 611 (2017)

The LDA-induced coupling of 2′,3′,5′-O-p...

A low-temperature, photoinduced thiol-ene click reaction: A mild and efficient method for the synthesis of sugar-modified nucleosides

Bege, Miklós,Bereczki, Ilona,Herczeg, Mihály,Kicsák, Máté,Eszenyi, Dániel,Herczegh, Pál,Borbás, Anikó

, p. 9226 - 9233 (2017)

Sugar-modified nucleosides are prime syn...

Synthesis and biological evaluation of selective phosphonate-bearing 1,2,3-triazole-linked sialyltransferase inhibitors

Dobie, Christopher,Montgomery, Andrew P.,Skropeta, Danielle,Yu, Haibo,Szabo, Rémi

, p. 1680 - 1689 (2021)

The critical role of sialyltransferase (...

Simamycin (5′-O-geranyluridine): A new prenylated nucleoside from Streptomyces sp. A

Igarashi, Yasuhiro,Kyoso, Takayuki,Kim, Youngju,Oikawa, Tsutomu

, p. 607 - 610 (2017)

A new nucleoside modified by prenylation...

Propargylglycine-based antimicrobial compounds are targets of TolC-dependent efflux systems in Escherichia coli

Roldan, Bec J.,Pajarillo, Andrea O.,Greenberg, Jacob D.,Karlinsey, Joyce E.,Cafiero, Mauricio,Frawley, Elaine R.,Peterson, Larryn W.

, (2020)

A library of novel L-propargylglycine-ba...

Synthetic Sansanmycin Analogues as Potent Mycobacterium tuberculosis Translocase i Inhibitors

Tran, Wendy,Kusay, Ali S.,Hawkins, Paige M. E.,Cheung, Chen-Yi,Nagalingam, Gayathri,Pujari, Venugopal,Ford, Daniel J.,Stoye, Alexander,Ochoa, Jessica L.,Audette, Rebecca E.,Hortle, Elinor,Oehlers, Stefan H.,Charman, Susan A.,Linington, Roger G.,Rubin, Eric J.,Dowson, Christopher G.,Roper, David I.,Crick, Dean C.,Balle, Thomas,Cook, Gregory M.,Britton, Warwick J.,Payne, Richard J.

supporting information, p. 17326 - 17345 (2021/12/13)

Herein, we report the design and synthes...

Bisubstrate Ether-Linked Uridine-Peptide Conjugates as O-GlcNAc Transferase Inhibitors

Makwana, Vivek,Ryan, Philip,Malde, Alpeshkumar K.,Anoopkumar-Dukie, Shailendra,Rudrawar, Santosh

supporting information, p. 477 - 483 (2020/10/26)

The O-linked β-N-acetylglucosamine (O-Gl...

Development of a Robust Manufacturing Route for Molnupiravir, an Antiviral for the Treatment of COVID-19

Bade, Rachel,Bernardoni, Frank,Bothe, Jameson,Brito, Gilmar,Castro, Steve,Chang, Darryl,Diaz-Santana, Anthony,Diribe, Ike,Emerson, Khateeta M.,Fier, Patrick S.,Humphrey, Guy R.,Krishnamurthi, Bharath,Morris, William J.,Ouyand, Honggui,Poirier, Marc,Sirk, Kevin M.,Sirota, Eric,Stone, Kevin,Tan, Lushi,Taylor, Jerry,Ward, Michael,Xiao, Chengqian,Xu, Yingju,Zhan, Jianfeng,Zhang, Yongqian,Zhao, Ralph,Zheng, Michelle,Zompa, Michael A.

supporting information, p. 2806 - 2815 (2021/12/30)

Herein is described the development of a...

362-43-6 Process route

2,2-dimethoxy-propane
77-76-9

2,2-dimethoxy-propane

uridine
58-96-8

uridine

2',3'-O-isopropylideneuridine
362-43-6

2',3'-O-isopropylideneuridine

Conditions
Conditions Yield
With toluene-4-sulfonic acid; In acetone; for 1h; Reflux;
100%
With toluene-4-sulfonic acid; In acetone; for 4h; Reflux;
100%
With toluene-4-sulfonic acid; In acetone; for 1h; Reflux;
99%
With toluene-4-sulfonic acid; In acetone; at 60 ℃; for 24h; Inert atmosphere;
96%
With toluene-4-sulfonic acid; In acetone; at 60 ℃; for 24h;
96%
With toluene-4-sulfonic acid; In acetonitrile; for 3h; Inert atmosphere; Reflux;
95%
With toluene-4-sulfonic acid; In acetonitrile; for 3h; Reflux;
94%
With toluene-4-sulfonic acid; In acetonitrile; for 3h; Reflux;
94%
With toluene-4-sulfonic acid; In acetone; at 20 ℃; for 2h;
93%
With sulfuric acid; In acetone; at 0 - 55 ℃; for 8.5h; Time; Industrial scale;
91%
With toluene-4-sulfonic acid; In N,N-dimethyl-formamide;
90%
With toluene-4-sulfonic acid; In acetone; at 20 ℃; for 1.5h; Inert atmosphere;
90%
With toluene-4-sulfonic acid; In acetone; at 20 ℃; Inert atmosphere;
88%
With toluene-4-sulfonic acid; at 20 ℃; for 3h;
85%
With toluene-4-sulfonic acid; In water; acetone; at 60 ℃; for 2h; Inert atmosphere;
81%
With toluene-4-sulfonic acid; In acetone; at 60 ℃; for 2h; Inert atmosphere;
81%
With toluene-4-sulfonic acid; In acetone; at 20 ℃;
80%
 
79%
With toluene-4-sulfonic acid; In acetone; for 24h; Reflux; Inert atmosphere;
79%
With toluene-4-sulfonic acid; In acetone;
73%
With toluene-4-sulfonic acid; In acetone; at 0 ℃; for 1h; Reflux; Inert atmosphere;
65%
With toluene-4-sulfonic acid; In N,N-dimethyl-formamide; at 20 ℃; for 18h;
61%
With DOWEX (50WX8) ion exchange resin (H+); In acetone;
58%
With toluene-4-sulfonic acid; In N,N-dimethyl-formamide; at 40 ℃; for 3h; Molecular sieve;
56%
With toluene-4-sulfonic acid; In N,N-dimethyl-formamide; at 40 ℃; for 1.5h; Inert atmosphere; Molecular sieve;
24.8%
With toluene-4-sulfonic acid;
 
With toluene-4-sulfonic acid; In tetrahydrofuran;
 
2,2-dimethoxy-propane; uridine; With toluene-4-sulfonic acid; In water; N,N-dimethyl-formamide; at 45 ℃; for 2h; Molecular sieve;
With Amberlyst A-21 resin; In water; N,N-dimethyl-formamide; at 20 ℃; for 0.333333h;
 
With sulfuric acid; In acetone; Inert atmosphere;
45 g
With toluene-4-sulfonic acid; In N,N-dimethyl-formamide;
 
2,2-dimethoxy-propane; uridine; In acetone; for 0.166667h;
With sulfuric acid; In acetone; at 20 ℃; for 0.5h;
 
3-((benzyloxy)methyl)-1-((3aR,4R,6R,6aR)-6-(hydroxymethyl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)pyrimidine-2,4(1H,3H)-dione
191479-26-2

3-((benzyloxy)methyl)-1-((3aR,4R,6R,6aR)-6-(hydroxymethyl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)pyrimidine-2,4(1H,3H)-dione

2',3'-O-isopropylideneuridine
362-43-6

2',3'-O-isopropylideneuridine

Conditions
Conditions Yield
With formic acid; palladium on activated charcoal; hydrogen; In water; isopropyl alcohol; for 6h; under 760.051 Torr;
99%

362-43-6 Upstream products

  • 67-64-1
    67-64-1

    acetone

  • 58-96-8
    58-96-8

    uridine

  • 73-31-4
    73-31-4

    5-methoxy-N-acetyl-tryptamine

  • 54503-61-6
    54503-61-6

    2',3'-O-isopropylidene-5-bromouridine

362-43-6 Downstream products

  • 123103-75-3
    123103-75-3

    2'-3'-O-isopropylideneuridine 5'-(bis(p-nitrophenyl)phosphate)

  • 15922-23-3
    15922-23-3

    1-(5-O-Acetyl-2,3-O-isopropylidene-β-D-ribofuranosyl)uracil

  • 7354-93-0
    7354-93-0

    2',3'-O-isopropylidene-5'-O-tosyluridine

  • 58-97-9
    58-97-9

    5'-Uridylic Acid